
A0878 077 mASSACHUSETTS INS? OF TECH CAMBRIDGE LAD FOR INFORMA--ETC F/9 It/I
ON THE ANALOGY BETWEEN MATHEMATICAL PROBLEMS OF NON-tINEAP FILT--FTC(U

_L JUN 80 S K RITTER APOSR-77-3321UNCLASSIFIED LIDS-P-1OGO AFOS-T-80-0583 ML

I.m EONNhl'
|IN

IiEEIIhEEE 0hEIIIIIIIIIIIIIIII1



i3.TR- 8 0-0 583
June 1980 LIDS-P-1006

LEVEL
ON THE ANALOGY BETWEEN MATHEMATICAL PROBLEMS

OF NON-LINEAR FILTERING AND QUANTUM PHYSICS(1)

by

Sanjoy K. Mitter
Department of Electrical Engineering

and Computer Science
and

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 U.S.A.

(1) This research has been supported by the Air
Force Office of Scientific Research under

grants AFOSR 77-3321, AFOSE 77-3281, and
AFOSR 77-3281B. To appear in Ricerche di
Automatica, Special Issue on System Theory ., ', '

and Physics. APp 0 u



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WII,, , n Itrd

QW EPO RT DOCUMENTA:TION PAGE R1"AD INSTRUCTIONS

~ 5$ 4~- 1-~ 8~ ~ OV CC ESSO NO. 3 7T.5 CATALOG NUMBER

S. 5.RK$GR~&-PRiO 0 COVER ED

6' N THE ANALOGY BETWEENJJNATHE2MATICAL 0PROBLEMS/ i

OF NONfLINEAR FILTERING AND QUANTUM PHYSICSo Interim /4~..~
6. PERORI~O 0G. PAPOR WIBR

/t Sanjoy K/itterj ~

9 PERFORMING OPGANIZATION NAME A.,D ADDRESS RJC.TS

M. I. T.
Lab for Information & Decision Systems
Cambridge,_MA__02139 61102F_____ 230____ _4J6_______

I I. CONTROLLING OFFICE NAME AND ADDRESS II

Air Force Office of Scientific Research/NM /1y Jun L80
Boiling AFB, Washington, DC 20332 4

14. MONITORING AGEN1&%.<"AE &- AEO'P.ESS(if different fronm Controlling Of fice) IS. SECURITY CLASS. (of this report)

- UNCLASSIFIED
/ - . - ..- 1Ia. DECL ASSI FI CATION DOWNGRADING

16 DISTRIBUTION STATEMENT (.1 Ili-~ Repo 
t- CE OL

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different fromt Report)

t$. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side ri necessary and Identify by block numnber)

20 ABSTRACT (Continu~e oreverse side //necess.ary and Identilfy by block numnber)

The main thesis of this paper is that there are striking similarities between th4
mathematical problems of stoc stic system theory, notably linear and non-linear
filterin theory, and mathematical developments underlying quantum mechanics and
quantum field theory. Thus the mathematical developments of the past thirty
years in functional analysis, lie groups and lie algebras, group representations
and probabilistic methods of quantum theory can serve as a iuide and indicator
to search for an appropriate theory of stochastic systems. In the current state
of development of linear and non-linear filtering theory, it is best to pr oceed

DD 1473 '-,TION0FINOV65 ISO9SOLETR Y4'4I-TI



SECURITY CLASSIFICATION O

20. Abstract cont.

-by "analogy" and with care, since "unitarity" which plays such an important
part in quantum mechanics and quantum field theory is not ncecssarily relevant
to linear and non-linear filtering theory. The partial differential equatons
that arise in quantum theory are generally wave equations, whereas the partial
differential equations arising in filtering theory are stochastic parabolic
equations. Nevertheless the possibility of passing to a wave equation by apprc
priate analytic continuation from the parabolic equation, reminiscent of the
current program in euclidean field theory, should not be overlooked.

UNCLASSIFIED

SECURITY CLASSIFICATION Of r, AOE('h n Er ,r



1. Introduction.

The main thesis of this paper is that there are striking similarities between

the mathematical problems of stochastic system theory, notably linear and non-

linear filtering theory, and mathematical developments underlying quantum mechanics

and quantum field theory. Thus the mathematical developments of the past thirty

years in functional analysis, lie groups and lie algebras, group representations

and probabilistic methods of quantum theory can serve as a guide and indicator

to search for an appropriate theory of stochastic systems. In the current state

of development of linear and non-linear filtering theory, it is best to proceed

by "analogy" and with care, since "unitarity" which plays such an important part

in quantum mechanics and quantum field theory is not necessarily relevant to lin-

ear and non-linear filtering theory. The partial differential equations that arise

in quantum theory are generally wave equations, whereas the partial differential

equations arising in filtering theory are stochastic parabolic equations. Never-

theless the possibility of passing to a wave equation by appropriate analytic con-

tinuation from the parabolic equation, reminiscent of the current program in euc-

lidean field theory, should not be overlooked.

To develop these ideas, it is best to begin with a reasonably general non-

linear filtering problem:

Let (Q2,A,P) be the underlying probability space and let xtdenote a scalar-

valued diffusion process which is the solution of the following Ito stochastic

differential equation:

(1.1) dxt = f(x t)dt + gxt)w

where wtis standard Brownian notion and f satisfies appropriate assumptions so that

(1.1) has a unique solution in the sense of Ito. We shall refer to (1.1) as the

physical process. Let

(1) There is no difficulty in generalizing to the vector case.
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(1.2) zt = h(xt) with zt E L2 (2 ,A,P), denote the signal process, and we

observe the signal in the presence of another Wiener process

t
(1.3) Yt z= - sdS + nt . We shall refer to (1.3) asthe observation equation.

0

We make the assumption that (xt, nt) are independent. Let Fy denote the
t't t

a-field generated by {y sIO < s < t1. The problem of non-linear filtering is to

recursively compute

(1.4) E[p(x )IFI], where say is a bounded, continuous function. E(-)[Fy]
t t

denotes conditional expectation with respect to Fy. The solution to this problem
t

can be obtained by Functional Integration and the Cameron-Martin-Gisanov formula.

Define a new measure on (0,A) by the Cameron-Martin-Gisanov transformation:

(1.5) d-P - exp (f zdys - 0 z ds).
dP

Under this new measure, the probability distribution of xt remains invariant,

but yt and xt are independent and yt is standard Brownian notion.

Let it denote the conditional expectation operator. Then a standard applica-

tion of the theory of conditional expectations gives us:

E0(xt ) d__P I FY[
(1.6) iT (0) = E[4(xt)IF] [d

dP

where E denotes expectation with respect to the P-measure. The mapping t+nt () is de-

f4ned to be the filter for the stochastic system (1.1)-(T.3). it itself can be

thought of as a measure-valued stochastic process.

For what follows it is convenient to rewrite (1.6) in the form of an input-

state-output relation. For this purpose define
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Then (1.6) may be rewritten as2

(1.8) t) = , where

1 denotes the constant function 1 for all x.

In the above is to be thought of as the state of the filter and equation

(1.8) as the state-output relation of the filter.

It is instructive to view (1.7) and (1.8) in the light of Gelfand-Naimark-

Segal construction of states and representations. The functions xt  *(x t) are

the observables of the physical system (1.1). The formula (1.8) computes the

conditional statistics of the observables * given the observation program

{Ys1O<s<t}. The analogy with the algebraic theory of quantum mechanics is strik-

ing, the notable difference being that the idea of computing conditional statistics

based on an observation program seems to be absent in physics. This viewpoint turns

out to be important in the definition of generalised observables for quantum systems

as probability operator-valued measures.

It can be shown that Pt has density qt which satisfies a stochastic partial

differential equation

(1.9) dqt 
= L0 qtdt + LlqtdYt

where L is the formal adjoint of the diffusion process generator of (1.1) and L
0 Duncan-

is the operator : multiplication by h(x). This is the Mortensen-Zakai equation

and is the fundamental equation of non-linear filtering. The density qt(z,yo)

has a representation as a function space integral

(1.10) qt(z,y t ) = f exp(ft h(x )dy, - 1 ft h2 (x )ds)dpz(x)

0~~~ x ,
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(i)
where the integration is over the path space of x with 

x 0 = 0 and xt = z.

Now in equation (1.9) the observation fy_ s10<<t} is given to us, and if we

rewrite equation (1.9) in the following suggestive form using Stratanovich calculus:

qt 1 2
(1.11) d% *Y-~'i- = (Lo - Ll)q% + YtLlqt

then equation (1.11) is the analogue of a euclidean (imaginary time) quantum field
a time-dependent

with , external force defined by the observations. We say that the analogy is to

euclidean quantum field (as opposed to euclidean quantum mechanics) since qt is a

measure-valued stochastic process. This paper is concerned with a systematic inves-

tigation of this point of view. In particular, in this picture the Kalman filter

occupies the role of the free quantum field.

This paper is divided into six sections. In section 2 we discuss the rela-

ship between Dirichlet and Schrodinger operators and show that it is possible to

associate a stochastic process with the ground state measure of Schr 6dinger opera-

tors. Section 3 is devoted to the Bayes formula on non-linear filtering and des-

cribes the Feynman point of view for non-linear filtering. Section 4 is concerned

with the construction of Fock space and discussing its role in non-linear filtering.

In section 5 we argue that the Lie algebra of operators L = LA{L - 1 L L } has
0 2 1'l

an important role to play in non-linear filtering. In section 6 we discuss the

question of representation of the filter.

This is a semi-expository paper and we have tried to concentrate on the ideas

involved and emphasize a certain point of view. The ideas come from constructive

quantum field theory as emphasized by Nelson and Segal, recent developments in

system theory and the theory of group representations. It is our hope that this

paper will go towards pointing in a small way the conceptual depth of stochastic

system theory which is still in its infancy.

(1) That is as integration over the path space of x, conditioned by xoUO and xtmz.
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2. The Feynman-Kac Formula, Dir hlet and Schrodinger Operators.

2.1 Introduction

Recent work on non-linear filtering theory, euclidean quantum

field theory and the stochastic mechanics of Nelson make extensive use of

the Feynman-Kac formula and the interplay between Schrodinger and Dirichlet

opeiators. In particular, a stochastic process associated with the ground-

state measure of Schrodinger operators turns out to be important. In this

section we give an account of these ideas and the related theory of hyper-

contractive semigroups.

2.2. Preliminaries.

Throughout this paper integration with respect to Wiener measure,

the Brownian bridge measure and the oscillator measure will be important.

The relation of Wiener measure to the Laplacian and the semigroup generated

by the Laplacian will also be important. For simplicity we shall be concerned

with scalar-valued stochastic processes. There is no difficulty in general-

ising these ideas to vector-valued stochastic processes.
(4*)th

Let 0 = C(+ ;R) and let W :w - W (w) = *t :Q - M be the tth
+9 t t W

coordinate function. We denote by Tt the right shift on 0. If we denote

by Ft the smallest G-field with respect to which {Ws I 0 < 5 < t} are measurable

and by F = a Wt It > O} , then F is the Borel G-field of Q and on (0,F) there

is a unique probability measure W such that W{Wo=Ob=O, the random variables

W-Wt,..., Wt -W are independent, Gaussian, zero mean, with variance
1 0 n n-i

t J-tJ 1 for the jth increment. This measure is Wiener-measure. For each

x CIR, the probability measure W is defined by path translation:
x

(*)We shall also use the notation x(t) for x when dealing with processes.

ti
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W (B) = W(6 (B)) B e F , where

6 x Mt= x + W t x EIR w E Q , t > 0.

Alternatively one could have started with a Gaussian process

{Wt I t> 0, W0 = 0 a.s} which is zero-mean and has variance It-sI and

stationary independent increments and constructed Wiener measure as a path

space measure on C(R+; F). For a measurable real-valued function f, define

(2.1) (Ptf)(x) = EW (f(Wt))
x

where EW denotes expectation with respect to W x. If the right hand side
x

makes sense,

(2.2) (P tf)(x) f f(y)p(t,y;O,x)
JR

where p(t,y;O,x) is the transition density of Brownian motion

(2.3)p(t,y;0,x) = -1 exp (- (x) 2 )t , t > 0, x, y c1R.

(21ft) 2

It is known that for p 4il,-], (PtIt > a) is a strongly continuous contraction

semigroup on LPCR). Its infinitesimal generator is - A, where A is the

Laplacian and V(A) = HP(F) = {fE-LPIDf F Lp in the sense of distributions).

For certain applications we shall need to do integration with respect

to conditional Wiener measure. From the properties of Wiener measure and the

corresponding transition density of Brownian motion, for 0 < t, <... <t
m

m

W {wlw(tl)1 A1 ,... 1W(tm)E Al = f H p(xi-1 ,xi;ti-ti 1 )XA. (xi )dxi
x i=l I

where XA is the characteristic function of A, x0=x, t0=0. We can then

construct a measure Wxy;t on the continuous paths on [0,t] with W0=x, Wt=Y
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with probability 1, 0 < t <... < t

W {wl(t1)E A ... ,w(t A } =x,y;t 1 ' " 1 m

m

f N P(X i-xi ;t i-l XA.(Xi))P(XmY;t-tm)dXi
IR i=l 1

W is called conditional Wiener measure. We have
x,y;t

(2.4) ff(w)dW = fdy(ff(w)dWx )
x x y;t

for f which are functions of the values the path takes on [0,t].

This measure corresponds to the Brownian bridge process, which is the

Gaussian process %s , say on [0,1] with covariance

E(6sat ) = sl-t) , 0 < s _< t < 1

In terms of this process we can write (2.4) as

(2.5) ff(w )dW0  = ff((l - t) x + y + 1 s)p(x,y;t)dxdyd8
st t _

t

where da represents the measure on the path space of 8.

The two processes which we have dealt with are not stationary Guass-

Markov processes. For this reason it is often important to deal with the

oscillator process which is the family of Gaussian random variables

(qt, <t <-}1with covariance 1 exp(_jt-sj). It is related to the operator

1 d2  1 2 1

L0 2 2  2 x - 2 the Harmonic Oscillator Hamiltonian.

2.3 The Feynman-Kac Formula.

Both in filtering theory and in quantum physics we are required to deal

with an operator on L2 () (say),
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1H = -A + V(x)2

where A is the Laplacian and we need to compute exp(-tH), the semi-group

generated by-H. The Feynman-Kac formula provides us with a representation

of the operator Tt = exp(-tH) as a Wiener Integral. The first approach

exemplified in the work of Nelson uses the Trotter Product formula to make

sense of the formula but requires information on the self-adjointness of

the operator H. The second approach proceeds by writing the formula first,

proving that it represents a strongly continuous one-parameter semigroup

and then its unique infinitesimal generator is computed. The second approach

uses probabilistic tehcniques and turn out to be the more general one.

If the potential is bounded above then a general form of the Feynman-

Kac formula can be obtained using martingale methods. For this purpose

and for later use we introduce certain probabilistic machinery.

Let (Q,F,P) be a probability space and (Ft. t > 0) a non-decreasing

family of sub a-fields of F. Let s > 0 be arbitrary and a: [s,-[x Q - Y and

b[s,-[x Q-I R be bounded progressively measurable functions. For any

f E C 2 M), define A tf for t > s by

(2.6) (A (q)f)(x) = a(t,q) - (x) + b(t,q) 'f
2x 2

If V(*,') is any progressively measurable function from [s,.[x P2 -R,

then (A t(q)f)(&(t,q)) defines another progressively measurable function of

t and q. Then it can be shown that for any C, a and b satisfying the above,

t
(2.7) f(t, (t)) - f (-+ A u)f(u,&(u))du

s

au u
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is a martingale relative to (S,f P) for all t > s, V f c C ([1,[x ).

A process E satisifying (2.7) will be referred to as an Ito process with

drift b and covariance a. The Feynman-Kac formula depends on the follow-

ing observation.

Let be an Ito process relative to (Q,F ,P) with drift b and covariance

a. Then for any progressively measurable function V:[s,-[x 9 -JR which is

bounded below and f c C1 ,2 ([0 ,[x JR])

t t

_f-V(u)du f -V (C) do

5 t afS

(2.8) e f(tct) r f - V(u)f) (u, (u))e du
S.

is a martingale after time s.

Now define the operator

tf _V (u) du

(2.9) TV f(s,x) = f e Vs (u

where dpi () denotes the measure on the path-space of given E(s) = x.s,x

Then we can show that T
V is a one-parameter strongly continuous semi-group
t

and from (2.8) we conclude that its differential generator is A + V(u).

(2.9) is the Feynman-Kac formula. When we specialize to the case when (t)
1 2

is Brownian motion, then A 2 . .and the formula reads setting s=O.u 2 d2

t

(2.9') (TV f)(x) = E [exp (f-V(W (s))ds)f(W(s))1.
x 0

Now this formula turns out to be valid for a much larger-class of

unbounded potentials and the semigroup TV has strong regularity properties.
t

(1) This argument is an exercise in Stroock-Varadhan Multi-dimensional Diffusion

Processes, Springer-Verlag, N.Y., 1979.
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The more general class of potentials we consider are: (HI) V is a

measurable function on R which can be written as V = V -V2 with V2 > 0,

V2 c LPOR) for p > 1 and V1 measurable, bounded below, such that for each

compact set K in3R, there exists q(K) > 2 s.t.

q
f v2 (x)J dx <
K

For this class of potentials, using the recent estimate (Berthier-Gaveau).

A 
t

Vt > 0, Vr > 0, K(r,t) - sup. EW (exp(-rf V(x )ds <

and their refinements, the Feynman-Kac formula holds for the class of

potentials governed by (Hi). If we define the operator

t
T t(f)(x) = EW (exp (- f V(Ws)ds)f(Ws))

x 0

we have

Theorem 2.1. (Carmona) For any q £il,[ and t > 0,

(i) Tt is a bounded operator on Lq and JIT tIIq < K(l,t)
q q-

(ii) If q' denotes the conjugate exponent of q, then for f C L g C L

f(Tt f)(x)g(x)dx f f(x)(Ttg)(x)dx

IRt IR

(iii) Tt is a strongly continuous semi-group on L
q

(iv) If lim V'(x) = + ' then Tt is a compact operator on L

1x1-



2.3. Schrodinger and Dirohle' )perators.

Let -H denote the infinitesimal generator of T . In quantum physics we

1
often need to show that -H is the self-adjoint extension of - SA + V, the

2

imaginary-time Schrodinger operator. If V > 0 this is well known. For the

class of potentials given by (HI) if V L then
loc

Proposition 2.2. (Carmona)

C(.1R) C D(H) and for f £ C (IR),Hf = - A+V)f where H is the infinitesiaml

generator of the semigroup Tt defined on L

In mathematical physics perturbed Hamiltonians are usually defined as

sums of quadratic forms. We briefly review this.

Let H be a Hilbert space. A quadratic form is a map q: Q(q)xQ(q) -,

where Q(q) is a dense linear subset of H , called the form domain, such

that q(-,p) is conjugate linear and q(q,.) is linear for 0,# Q(q). If

= q(,) we say that q is symmetric. If q(p,O) > 0 Vo£Q, q is

called positive and if q(0,0) > - MI SJ 2 , for some M we say q is semi-

bounded.

Let A be a self-adjoint operator on H. By passing to the spectral

representation of A, A is multiplication by x on 0 L 2 R,pn). Let
n=l

N N

Q(q) = { n(X)l I I I f xIIn(x) dn <
n=l n=l -

for all I,4' Q(q) define
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N

n=l _C0

q is called the quadratic form associated with A and writing Q(A) =Q(q),

Q(A) is called the form domain of A.

Let q be a semi-bounded quadratic form, q(IP,4) > -M) IP) 2
. q is call-d

closed if Q(q) is complete under the norm

II i'p+l = qipp)+ (M+l)IIII 2

If q is closed and DC Q(q) is dense in Q(q) in the 11.11+l norm then D is

called a form core for q. The following fact is important.

Theorem: If q is a closed semibounded quadratic form, then q is the

quadratic form of a unique self-adjoint operator.

We now define Schrodinger operators as form sums on L 2O). For f,

g F C'2C) define

E (f,g) = f Vf(x) Vg(x)dx
0 2

Integrating by parts

(f,g) = -Vfg2 and hence s is closable. The form domain

Q(F0 ) of E0 is H MF). Let V be a real-valued measurable fn. on]R and set

Q(V) = {fEL21 f IV(x)Ilf(x)I2dx < +.}
OR

On Q(E: )nl Q(V) define
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C(fg) = C (fg) + (Vfg, -:;tere

(Vf,g)=((sgnV)IvI2f, IV 1/2g)

If we assume V = V1-V s.t. V bounded below and V E: L V E L then
1 2 1 1 loc., 2

E is the form of a unique bounded below self-adjoint operator 
H on L

2

with form domain Q(H) = Q(C 0) n Q(V).

Let be a Borel prob. measure on R which satisfies

(2.10) dp(x) = e- 2h(X)dx

where h is a real-valued, locally bounded, absolutely continuous function

2 . o l ,ggCO efn

with first order partial derivatives in Lloc . For all f. g E Cc(R) define

(2.11) 6(f,g) Vf(x) Vg)dp(x)
F

Integrating by parts the right hand side, we get

(2.12) 6(fg) = (Df,g) , where (',') denotes the L ()-inner

product and

(2.13) Df = A f + VhVf
2

From (2.12) 6 is given by a symmetric operator and hence is closable.

Let 6 denote the closure. 6 is referred to as the Dirichlet form of p and

D the associated Dirichlet operator.

We can prove that

Proposition 2.3. (Carmona) The form domain Q(Z) is H ().



We show the relationship between Dirichlet forms and Quadratic forms

associated with Schrodringer Operators. Let the potential V satisfy

hypothesis (Hl). We assume that inf spec (H) = E is an eigenvalue and

let ' be the corresponding ground state eigenfunction.

Let h = - Log I and define the Borel probability measure p on B by

-2h(x)
dp(x) e dx

Define the operator D by

(2.14) D = C(H-E)C
- 1

where C is the unitary operator from L 2O,dx) - L 2( p) defined by

(2.15) 0 = 'P1 , E L2R,dx).

2
D is a positive self-adjoint operator in L (p), 0 is a simple eigen-

value and the constant function 1 is the corresponding eigenfunction.
fact

In D is the unique positive self-adjoint operator associated to the

closed positive bilinear form 6 corresponding to E-E (in the unitary

equivalance C) and C00W) is a core for 6.
c

Since P is bounded and locally bounded away from 0, h is bounded and

locally bounded above. Since 'EQ( 0 ) and the first order partial derivatives

of h are in L2oc. we can associate with P a Dirichlet form 6 and a Dirichlet

since a
Operator D. Now 6 is defined as the closure of form whose domain is C() and

c

C P) is a form core for 6, one can show that 6 6 and D = D and hence

the Dirichlet form and Dirchlet operator are unitarily equivalent to the

Schrodinger form and Schrodinger operator.
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2.4. Stochastic Processes Assc- .ted with Dirichlet Forms and Dirichlet
Operators.

The unitary equivalence between Schrodinger and Dirichlet operators

exhibited in the previous section has an important role in Nelson's stochastic

mechanics and also in non-linear filtering theory.

We consider the Schrodinger operator H = - -A + V defined as a sum of
2

quadratic forms on L 2CR,dx). We assume that inf spectrum (H) E (assumed

to be 0) is an eigenvalue and the corresponding eigenfunction 4 > 0 and

normalized f i(x)2dx = 1. Define the Borel probability measure 11 by

dv(x) = (M(x)) 2dx. Let S be the corresponding Dirichlet form and D the

corresponding Dirichlet operator. Let h = -log 4.

We want to construct a Markov diffusion process which corresponds to a

stochastic differential equation with drift -Vh. There is an obvious difficulty

in interpreting the stochastic differential equation in a strong sense. But we

can construct a weak solution using the measure transformation technique of

Girsanov and the Feynnan-Kac formula.

To do this we assume the ground state 4(x) > 0, Vx (by choosing a represen-

tative from an equivalence class) and we also assume that 4(x) + 0 as lxi - -.

Now we use the unitary equivalence between the Dirichlet operator D and the

1 d
2
_

operator H 2 2 + V(x) to conclude that
2 dx2

(2.16) (e-tDf)(x) = (x)-IEw [exp(-ft V(Ws)),(Ws)f(Ws)ds]
x

-tD
where e is the semi-group generated by -D.

For each t > 0, consider

(2.17) Lt = P(x)-l(wt)exp(-ft V(W )dS) , which
5
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is a random variable, positive W -a.s. and EW (Lt ) = 1. Hence, (,Ft ,L t ) is
x

a martingale, where Ft denotes the smallest 0-algebra for which the coordinate

functions Wt--are measurable. Hence for each x, P = Lt"W is a probability

measure on (,F).

Now by explicit calculation, V(x) = L(-Ah(x)+IVh(x) 12=) and since h -log

we get from (2.17)

(2.18) Lt exp[-h(Wt) + h(x) - _10f1Ah(W )ds - f1 Vh(Ws)I2ds)]

The idea now is to apply the Ito-differential to the function h. There is a

difficulty here because the function h does not have continuous partial derivatives

upto order two. But h is a convex function and for these functions the Ito-differ-

ential rule can be extended to continuous functions with first partial derivatives

in L2 OR, dx) and second partial derivatives in L1  (F, dx). Applying the gener-
boc boc

alized Ito-differential rule tc (2.18), we get

Lt exp[-fJ Vh(W )dW - Vh(Ws)12ds].

Therefore by the Girsanov theorem, the process Bt = W - W + Vf Vh(Ws)ds is a

(F tPx) standard Brownian and calling Wt = Xt, the stochastic process (X tlt>o)

considered on the probability space (0, F P ) is a unique weak solution of
tx

( dXt = -Vh(Xs)ds + dBt

(2.19)

X0 = x , a.s.

Furthermore the measure v defined by dP(x) = V(x) 2dx is the unique finite

invariant measure of (2.19).
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From the construction of the probability measure Px, we see that it has a

transition density

(2.20) p(t,y;O,x) = 4(y)i (x) EW [exp-ft V(Ws)dslWt=y] p(t,y;0,x)

where p is the transition density of Brownian motion.

We remark that it is this transition density we wish to compute since this

corresponds to the fundamental solution of a parabolic partial differential equa-

tion. We shall see later the importance of (2.20) for non-linear filtering prob-

lems. For non-linear filtering problems the decay properties of this transition

density are also of importance.

We investigate these matters now.

Firstly, we can check that for V t > 0, p(t,y; 0,x) is a continuous function

of the pair (x,y). In fact the following estimate holds:

.) a constants cl, c2 such that(2.21) c~t

V t > 0 , V(x,y) E P x F , p(ty; 0,x) < c1 e 2 (y)W-l(x) p(t,y; 0,x)

If the semigroup

(Ttf)(x) = EW [f(W s ) exp(-ft V(W )ds] is compact (see Theorem 2.1) and its spec-5
xtrum is strictly bounded away from zero, then the density p(t,y; 0,x) satisfies:

a positive constants cl, c2 such that

(2.22) -c t

sup p(ty; O,x) - 0(y)2 I<c 1 -l(x)e 2 t >0, V x E.

2.5 Hypercontractive Semigroups

In the previous sections we have seen that for a large class of potentials,

the semigroup Tv has a negative infinitesimal generator which coincides with a
t

1 d2

self-adjoint extension of 2 - + V(x). In this section we point out that the2 dx 2
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semigroups defined by the Feynman-Kac formula are often Hypercontractive semigroups.

These semigroups have played an important role in constructive quantum field theory

and are likely to play an equally important role in the theory of non-linear filter-

ing.

We follow the notation, hypotheses (specially on the potential V) and the

terminology of the previous sections.

tD 2 2We consider the Dirichlet semi-group (e-  , t>O) on L (M) where dij(x) = 4(x) dx.

tDDefinition: The semigroup (e- , t>O) is said to be hypercontractive if for some

t > 0 and some r > 2, e-tD is a bounded operator from L2 () into Lr().

From our point of view the best approach towards the question of hypercon-

tractivity is via the approach of Gross using Logarithmic Sobolev inequalities.

Definition: The operator D is called a Sobolev generator if for some real constants

c > 0 and y we have

(2.23) f Ilf2 Log IfIdp < c(Df,f) 2 + YI1f1 2 2 + HjfII 2 2 Logl If I l 2

for all f E D(D). The constants c and y are called the Sobolev coefficient and

the local norm of D.

Logarithmic Sobolev Inequality (Gross)

If 'j is a probability measure on F which satisfies:

(2.24) f IfI2LoglfIdp < cf IVfI 2di + y11fn12 2 + Ilf,12 2 LogI fiI 2
F- F L2(1) L(1j) L( )

for some constants c > 0, y > 0 and Vf which are bounded functions with distributional

first order derivative in L 2(U), then for V r c [2, + [

(2.25) f IfI2Loglfldp < c(r) f Vf.Vfr dp + y11f 1r
g 2 ( + IfI1 r 2 ( o IfI11 2

F F rL~ Li) L (10
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V f as above, where f = (sgnf) Ir- I and c(r) 
= cr

r 2r-l)

The salient facts about hypercontractive semigroups and Sobolev generators

are the following (Carmona)

Proposition 2.4. (e-tDlt>O) is a hypercontractive semigroup if and only if D is

a Sobolev generator.

Proposition 2.5. D is a Sobolev generator with Sobolev coefficient c if and only if

-Log <cD + b, the above interpreted as quadratic forms on L2 (p), for some

constant b.

Consider potentials satisfying (Hi) which have the further property:

Vx E m , alP(x) + bI < Vl(X) < a2P(x) + b2

where a1 a2 > 0 , bl, b 2  IF and P an even polynomial, and lim inf IxI- 2P(x) > 0.

Ix-

Proposition 2.6. Schrodinger operators with potentials of the above class generate

Dirichlet semigroups which are hypercontractive.

Example:
2

(i) The operator D 2 d2 generates a hypercontractive semi-group

-tD 
2 1 2

e on L (,R - ex dx).

(ii) Consider a stochastic differential equation:

dxt = f(xt)dt + dwt

Suppose that the Riccati equation

df + f2= V(x) , where V(x) is an even polynomial satisfying the hypotheses
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of this section such that a global solution exists for the Riccati equation. Then

the generator of the associated diffusion process is in fact a Dirichlet operator

and generates a hypercontractive semigroup on an appropriate L2 ()-space.

Notes and References for Section 2

(i) For general references for this section, consult

1. B. Simon: Functional Integration and Quantum Physics, Academic Press,
New York, 1979.

2. M. Reed and B. Simon: Methods of Modern Mathematical Physics, Vols. I
and II, Academic Press, New York, 1972, 1975.

3. D.W. Stroock and S.R.S. Varadhan: Multi-dimensional Diffusion Processes,

Springer-Verlag, Berlin, New York, 1979.

(ii) In this section we follow very closely:

1. R, Carmona: Regularity Properties of Schr~dinger and Dirichlet Semigroups,
J. of Functional Analysis 33, 259-296 (1979).

(iii) The material in Section 2.4 is apparently partially new and uses the Girsanov

transformation to obtain a weak solution of a stochastic differential equation.

For a slightly different approach see:

1. H. Ezawa, J.R. Klauder and L. Shepp: A Path Space Picture for Feynman-
Kac Averages, Annals of Physics 88, 588-620 (1974).

(iv) For the generalized Ito Differential rule, see A. Bensoussan and J.L. Lions:
Applications des In~guations Variationelles en Cbntrole Stochastique,
Dunod, Paris 1978.

(v) The reference to stochastic mechanics is: Dynamical Theories of Brownian
Motion, Princeton University Press, Princeton, N.J., 1967.
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3. The Bayes Formula and the Unr-ormalized Conditional Density Equation

Let (Q,F,P) be a complete probability space, F (Ft) , 0 < t < 1 a non-

decreasing family of sub G-algebras of F and (tFt) , 0 < t < 1 a Wiener Process.

Condider the signal process z = (ztF t ) and the observation equation

(3.1) Yt = f t z ds + r t

0s t

Let

(3.2) zt = h(x t ) , and

xt be the solution of the Ito stochastic differential equation

(3.3) dxt = f(xt)dt +g(xt)dw t

We make the following assumptions:

Al. The functions f and g are continuous and bounded and equation (3.3) has a

unique solution in the weak sense for each initial condition x0 (later we

shall have to make further smoothness assumptions).

A2. xt and n are independent and E(flh(x )2ds) < .

Under the above hypotheses we can write down a Bayes formula for computing

E( (xttFy) where Fy is the a-field generated by {y_ 0<s<t) and E(flo(x s)2ds) <

This relies on the Girsanov transformation. It is known that there is a new equiv-

alent measure P under which yt and xt are independent, the distribution of xt re-

mains invariant and under this new measure yt is Brownian motion. The Radon-Nikodym

Derivative of P with respect to P is given by

p exp(fth(x)dy fth2 (x )ds) Rt
dP 0 sds 2 0 s

Ft

I'
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Hence

E(<(xt)Lt I Fy)
E(x ) IFY) t t

t t~~ E( t)

Using the independence, it is convenient to view this conditional expectation as

expectation on a product space (QxSQ,AxA,PQP) and write it explicitly as

^ ff(xt(h))exp(fxoh(X ())dYs(()-ift(xs()) 2ds) dP(^)
(3.4) Cdx )= s~ S 20(34 (t) fnexp(ft h(xs(W^))d~rs(w)-l fth(xs( ))2 ds) dP(n)

0 s s 20 s

This is the Bayes Formula.

If we replace ys by x for x C C(0,1; x ) and define

(3.5) P(tx,O) = exp(ft h(x (03))dx (M)-1 f h(xs( ))2 ds) and

(3.6) g(t,x) = f^p(t,x,Wi)dP(W)

dli
then g(t,x) is the Radon-Nikodym derivative _2 (tx) , where 11 is the measure

induced on C(0,1) by the observation and P i is the Wiener measure on C(0,1) in-

duced by q.

Let 0t( ) denote the numerator of (3.4). It will be also convenient to write
t

the numerator of (3.4) as a Feynman-Kac formula

and X = C(O.l).

Let Pt be the semigroup of the diffusion process corresponding to (3.3) andi 2

L0 = 1 2 (x) - + f be its infinitesimal generator. Then a satisfies the
sx2

stochastic partial differential equation
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(3.8) dGt() = at(L0 )dt + cI'L,)dYt  v 4 D(L n V(LI) where
t t 00 1'

L is the unbounded multiplication operator h.

This is one of the fundamental results of non-linear filtering. Now using

the fact that h(x ) is a semi-martingale and using the relationship between ItoS

and Fisk-Stratanovich integrals we get

ft CT (h)dys = ft 0 (h )1dy <O(h ),y> , where< > denotes the quad-

ratic variation and , denotes the Fisk-Stratonivich integral and hence

we obtain

(3.9) dot () =  t (L )dt -1 (h2) + at(h).dyt , which

we write symbolically as

(31) d~t () •l 1 h2
(3.10) = [(L0 + Yth - h )(4)] which

we can integrate by the Feynman-Kac formula

(3.11) C  E [exp(f Ythds - 2 ft h 2 ds)l(xt 1]

where a0 is a measure-valued random variable independent of y such that F[a0(W ]

V() and P is the initial distribution.

Define

E(t, at, y)= E[LtlOY{xtIx~t]

and define

q(t, z, 4) = t (t, z, yO)P(t,z)

where p(t, z) is the density of the x-process. Then
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f) (z)q(t, z, y4)dzt R0

Now t() I d t , and hence we see that OT has a density q(t, z,y

hence from (3.7)

(3.12) q(t, z, ytO ) f exp (fth(x )dy f t h2(x)ds)dz(x)X 0 0

where the integration is over the path space of x with x0 = 0 and xt = z. It
0 t

can be shown that t = q(t, z, y0) satisfies the stochastic partial differential

equation

(3 13) dq t  L 1 2
((L - Ll)qtdt + Llqt " dyt

where L* is the formal adjoint of LO.0 0

Equation (3.13) is the Mortensen-Zakai equation for the unnormalized

conditional density.

3.1 Mortensen-Zakai Equations and Gauge Transformations

The study of non-linear filtering is the study of the Mortensen-ZaIai equa-

tion--its explicit solution and its group invariance properties. Equivalently it

is the study of the function space representation of a t() given in (3.7) and (3.12).
t

In (3.7) we have the stochastic integral f h( s)dy. Under our hypotheses we can
0

write

ft h(& )dy s = yth(t) - (E f t Ysdh(

Using the above it is clear that at can be evaluated for all y E C(0,1) (not justC t (€,Y)

a subset of full Wiener measure). It has been shown by Clark (1,-) is a ver-

sion of the conditional expectation 0.
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An equivalent way of considuring this problem is to eliminate the stochastic

integral from the Mortensen-Zakai equation (3.13).

This can be done by making the observation that the operator L1 = multiplica-

tion by h is a diagonal operator, and its effect can be removed via a time-dependent

Gauge transformation. To see this write t = exp(h(x)yt) t

Then a direct calculation shows that it satisfies an ordinary partial differential

equation (parametrized by y):

d * 1 2)ephxY.t

(3.14) dt = exp(-h(x)yt)(L*-1 LlMexph~x)yt*qt)

It is interesting to rewrite equation (3.1h) in a form which brings out the
S1 2 *12

commutation properties of L - L and L If we denote by L2  [L0 -1 L,L]02 1 by 0271 1

and L3 = [LIL 2 considered as formal differential operators and computed on some

common invariant domain, (3.13) can be rewritten as:

___ *1i2~ 2 ~

(3.15) dt = (L*-1 L2)jt + YtL2qt - Y2 L3qd 0 1 t -2

Explicitly L = h - + (- h -fhx) ' L -h (assuming g H 1 for simrlicity).
2 x dx 2 xx x 3 x

When we are dealing with unbounded observation operators h it is this equation

which is the easiest to deal with. The above also shows that the commutators L2

and L3 have an important role to play in the understanding of equation (3.1h).

In (3.12) we see that evaluating qt involves an integration over the path

space of the x-process. The integration would be simplified if this could be done

with respect to Wiener measure. This corresponds to removing the drift term in
*

the operator L . For simplicity assume g 1 1. Define the operator multiplication
0*

by (x), where 4 is invertible from the intertwining relationship.

. . . . . . . . .A
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a d fx f(z)dz
- f)p = d- , which defines (x) = e 0 Then the operator

L0tasom L @ =1d 2  2 I t -1

L transformsto L0 ; - -V(x) , where V(x) (f + f . Then q

is the solution of

^ 1 d d 2  12(3.16) dt = Loqtdt - V V(x)qtdt + hqt" dyt , where L0 = 2 ax2  "2lh2

This is also an example of a Gauge transformation. Equation (3.15) involves the

1 2 1 2 1(imaginary time) Schr~dinger operator- -- +2 h +i V(x). It should be noted2 C~x 2 ' .

*1
that the Lie Algebra of operators LA{L - - LI ,L and LA{L -V(x),L I are isomorphic.

Recall in section 2 we have seen how certain Schrdinger operators are unitarily

equivalent to Dirichlet operators. (See later section also.)

3.2 Integration of the Mortensen-Zakai Equation and Calculus of Variations

In section 3 we have seen that solving the Mortensen-Zakai equation is equiv-

alent to evaluating the function-space integral

q(t,z,y) t X exp(ft h(xs)dy - 1 ft h 2(x•)ds)lz(x)

We now show how this can be done by adapting certain ideas of Feynman. Feynman's

idea was to separate the classical and quantum parts of the total quantum motion

and also to understand the relationship between classical and quantum mechanics.

We shall attempt to separate the contribution of the observation in qt from that

of the signal process. For the class of problems considered by Benes this can

be done explictly.
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For this purpose, we consider that the xt-process is governed by

dx t = f(x )dt + dwt , and the observation equation is

dy t = xt dt + dl t

* 1 d2  d
Hence L = - - - - f , and LI = mult. by x.

o 2 dx2 dx1

We do a gauge transformation and attempt to solve

d~qt LO qtdt - V(x)q dt + Aqdt , where V(x)=i(f + f2)

Hence we have to compute:

(3.17) (t,z,y ) = Ew [exp(f xdy - ft x2 ds - ft V(xs)ds]

where the integration over Wiener-measure with x0 = 0 and xt - z.

We show that if V(x) = ax2 + bx + c , and fx + f2 = V(x) has a global solution

then a sufficient statistic for computing q is the set of equations:

(3.18) a M -sds ; O = 0 , t =z

dns = -&ds - V (Cs )ds + dys

We call the above set of equations the bi-characteristics of the Mortensen-Zakai

equation. To see this we introduce the transformation

dx - dCs + dz ' where & is given by the above and we do not impose

the boundary conditions.

(1) This stochastic two-point boundary value problem has to be given an approp-
riate sample-pathwise interpretation.
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By essentially the Girsanov Theorem,

dl'
d = exp(fl n dz ft n2 ds)

(1)
Now impose the boundary conditions and hence in terms of the z-variable

i(t,z,y ) =fexp(ft(zs+4s)dy - I f(zs+) 2as - ft V(zs+Es)ds)

xexp(ft nsdz - I ft r2 ds)dp 0

where the integration is over the path space of z with z0 = 0 and zt = 0.
2

By applying Ito's rule several times, and using the fact that V(x) = ax + 2bx + c,

we obtain

i(t,z,y ) = exp( ft sdy - ft bs ds + 1(znt))
02 0 ss 0 s 2 t

(3.19)

x f exp(-ft(v(z ) + z2)dp0

The terms involving the z-process can be explicitly evaluated.

It is worth remarking that (3.18) is the solution of a variational problem.

To see this let us first interpret equation (3.18) in the Stratanovich sense.

Then equation (3.18) are the necessary conditions of the following optimal control

problem:

Min 1 ft u2  s + 2 + 2V(ts)]ds
u

u to =0 = z (2)

(i) By conditioning.
(2) This variational problem can be given rigorous meaning using recent

work of Bismut.
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If Yt 0 and V 0 0, then tfe equations (3.18) correspond to the imaginary

time harmonic oscillator and our methods show the relation between a euclidean

quantum harmonic oscillator and an imaginary time classical harmonic oscillator.

These methods could also be applied to study the limiting behavior of the

Cauchy problem

3j (t,x) 2 , + V(x) as 0

with an initial condition P x(x,0) = exp[-S 0 (x)/X] and show that the limiting solu-

tion satisfies the corresponding equations of classical mechanics. This would

provide an alternative derivation to the results of Maslov who treated the Schro-

dinger equation version of this problem.

Equations (3.18) is related to the smoothing problem. It turns out, that

the unnormalized conditional density could also be evaluated by the following

sufficient statistic.

das = (f(as) - s)ds ; a0 = 0 at = z

(3.20)

1dns = -(f (as)n s + Us)ds + dys

These are the Euler-Lagrange equations for the following optimal control

problem:

Min 1 u d fO 2 + It )22 0 s 2 0  (s-y) + su

= f(a ) + u S a0 = 0 at  z.S S S
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For the general Kalman filtering problem

xt = Fx tdt + Gdwt

(3.21)

dyt = Hxtdt + dlt

the equations corresponding to (3.20) would be

dat = Fa tdt - GG' tdt ; a0 : 0 at = z

(3.22)

dI t = -H'Hatdt - F' tdt + H'dyt

These can be recognized to be the smoothing equations given in Hamiltonian

form. Our methods show that these equations are intrinsically attached to the

Mortensen-Zakai equation and play the role of bi-characteristics corresponding to

Hamiltonian-Jacobi equations.

Although we do not do it in this paper it seems reasonable to believe that

a perturbation theory analogous to Maslov's work could be carried out for non-

linear filtering using the framework used in this section (see forthcoming work

of Duncan and Mitter).
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Notes and References for lect: , 3

(I) For the derivation of the Bayes formula and the Mortensen-Zakai equations

see E. Wong: Stochastic Processes in Information and Dynamical Systems, McGraw

Hill, New York, 1971 and the references cited there.

(ii) The seminal paper on nnn-linear filtering is: M. Fujisaki, G. Kallianpur

and H. Kunita: Stochastic Differential equations for the Non-linear Filtering

Problem, Osaka J. of Math., Vol. 9, 1972, pp 19-40.

(iii) Equation (3.14) was first derived by J.M.C. Clark: The Design of Robust

Approximations to the Stochastic Differential Equations of Non-linear Filtering

in Communication Systems and Random Process Theory: ed. J.K. Skwirzynski, Sithoff

and Noordhoff, 1978. For more recent work see for example M.H.A. Davis: A Path-

wise Solution of the Equations of Non-linear Filtering, to appear. Writing it in

a form involving the commutators makes it clear that for certain problems these

equations can be integrated using group inveiance methods.

(iv) The idea of using gauge transformations in the context of non-linear filtering

theory is new, although it is implicit in the work of Benes. See also R.W. Brockett:

On the Invariance Group of the Conditional Density Equations, Proceedings of the

IEEE Decision and Control Conference, 1979, Ft. Lauderdale, Florida. The gauge

transformation can be introduced in a much more general setting.

(v) The variational interpretation of certain non-linear filtering problems in

the form presented in Section 3.2 is new and uses certain ideas of Feynman. See

for example: R.P. Feynman and A.R. Hibbs: Quantum Mechanics and Path Integrals,

McGraw Hill, New York, 1065. For the Girsanov transformation and absolute contin-

uity of measures, see R.S. Lipster and A.N. Shiryayer: Statistics of Random

Processes I, S inger-Verlag, New York, 1977.

(vi) The reference to Maslov's work is: V.P. Maslov: Theorie des Perturbations et

M~thodes Asymptotiques, Dunod-Gauthler-Villars, Paris, 1972.
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4. Multiple Ito Integrals and Fock Space

There is a close relationship between the theory of multiple Ito integrals

and Wick polynomials. These objects also have an important role to play in

Wiener's theory of homogeneous chaos and representations of the Weyl Commutation

relations on Fock space. These ideas and constructions also are of importance

in non-linear filtering theory.

4.1 Multiple Ito Integrals

The multiple Ito integral of order K is a map f I K(f): L ( )- L2 (0,F,P)

having the following properties:

K
W I K(h) = 11 W(Ai ) if h 1 A x.. X1A. for

i=l 1

disjoint rectangles AI,...,AK

(ii) I K(f+g) = I K(f) + I K(g)

(iii) If fj - f in L ( RK ) then I K(f) I K(f) in L2 (0,F,P)

If k = 0 and h £ F ,define I 0(h) h.10

Let f(tl, ... $t,t () denote the symmetrization of f.

KT 7T 

2K 2

The mapping f 1 f is the projection of L 2(
K ) onto the subspace L( )O of L2 (RK

spanned by the symmetric functions.

The multiple Ito integral has the following properties:

(a) For f C L2 (I K ) , g E L2 C K ) I KC) = I K(i) and

E(IK (f)IK(g)) I{K=K,] K! (fg)L2

(b) For 0 c L2 () and X E C ,

.xp... ] ds) 4 dw ...dv
S k JR P K 1 K
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(0) 1,2 (Q,F,P) = 1 ,)lv, L 2~ OR LnK

K=O k=O

We now consider two atjLications of multiple Ito integrals

4.2 A Representation Theorem for the Best Estimate of a Signal

Consider the non-linear filtering problem

It
y zds + rlY,. 0 s s

and assume that the hypotheses of Section 3 (assumptions Al and A2) hold. Suppose

that we want a representation for Zs = E(z IFY). It is a standard result that the
S st

innovations process

V = t -ft 2 d
Vt = Yt- ZsdS

It is well known that Vt is standard Brownian motion. Recently we have shown

= Ftmod P. Hence z C (QP) and hence from property (c)

z 0+ 0' k(ts)d + 0 J k 2 (t'ss2 )d1 dv ......

and a standard application of the definition of conditional expecuation as a pro-

jection shows
2

k (t,s) = -E(xtv s ) , k2(t sl's2) = S -E(xtv v ) etc.
1 ~ s t s ( s 2 1s~2 ts1 S 2

This representation is not too useful since the computation of the innovations

requires computing zt. However for the following problem it immediately leads to

a finite dimensional filter. Suppose that z = Hx and dx = Fx ds + Gdw . We ares 5 s s s

required to estimate x and a = P(x ,0<s<t) where P is a polynomial functional of

x with separable kernels. Then it is not too difficult to show that the estimate

is also a polynomial functional with separable kernels of the innovations dv =

dys - Hx -ds where x Is the Kalman filter estimate.s s
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The ideas of multiple Ito integrals also have applications to representing

the density q(t,z,y ) as a multiple integral expansion in the semi-martingale Y"

4.2 Random Fields

In quantum field theory random fields (weak distributions) and their poly-

nomial functions (suitably defined) have played an important role. A Wiener

integral or more generally an Ito integral is an example of a random field.

Multiple Ito integrals can be considered to be polynomial functions of random

field3, provided these polynomial functions are suitably renormalized. These

are the Wick polynomials. Orthogonal )6 lynomials and in particular the Hermite

polynomials have a special role to play in this theory.
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1i.2.1 Bazic Defitilt ipr umi 1'> i,:

Let H be a real Hilb,- .3uace, with the scalar product <,>. We

shall identify H with its top,.],yical dual. Let (Q,A,u) be a probability space.

We denote by L ( 2,A,) the space of real (complex)-valued random variables on

(Q,A, i).

Definition 4.1. A continuous (1) linear function

(4.l) F : H - L°(Q,A,i)

is termed a random field or weak distribution. Two random fields F and F2 are

equivalent if for any {f1l . . . f} H, the joint distribution of

F(fl), . ,F (fn ) and F 2(f ). . F 2(f n ) are the same.

An example of a random field which is of importance to us is one which is

"generated" by the Wiener process. Let W(t,w) denote the Wiener process for

t > 0. Define W(-t,w) = W(t,w), t > 0 and thus extend the definition to all of

R. Then if we define

(L.2) F : L 2(R) - L°(Q,A,p) by

F(f) = ffdw(t,w), where the right hand side is a Wiener integral, then F is a

random field.

Definition 4.2. Given a random field F : H - L°(Q,A,-p), the mean functional is

the map.

(L.3) M F(f) = E(F(f)) = fF(f)d.

The mean functional need not exist for all f E H. If it exists, then M is a
F

linear (not necessarily continuous) functional on H.

(1) Continuous means if f. - f in H then F(f i ) F(f) in probability.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 .
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The covariance functional CF  H x H C is defined by

(4.4) CF(fg) = E{[F(f)-MF(f)][F(g)-MF(g)]}

where - denotes complex conjugation. If CF exists for all f, g e H then CF

is a positive Hermitian bilinear form on H. The variance functional VF is

defined by V F(f) C F(f f) and the correlation functional by

B F(f,g) = E[F(f)F(g)].

The random field is said to be bounded if there exists a k > 0, such that

/ BFff < k HfH V f c H.

The characteristic functional F: H + T is defined by

(L.5) Ff) = E[eiF(f) feiF(f)dW.

It is a continuous,positive definite functional and CF(0) = 1.FD

Remark: Bochner's theorem extends to this infinite dimensional situation.

The following proposition is a consequence of the Riesz representation

theorem.

Proposition 4.1. Suppose F is a bounded random field. Then there exists a

unique vector fF E H (the mean) and unique bounded self-adjoint non-negative

operators RF (covariance) and SF (correlation) such that MF(f) = <ffF>

C F(f,g) = <RF f,g> and B F(fg) = <S Ff,g> .

Definition 4.3. A random field N such that B N(ff) <- with characteristic

function

(4.6) CF(f) - exp[iMN(f) 1V(f)1

is te-rmed a Gaussian random field.
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We shall be interested in i. normal random fields N with mean zeroC

variance parameter c > 0. Its covariance function is CN (f,g) c<f,g>. If

1 then we get the unit isonormatl random field. lts characteristic function

ff12

Now let us consider a bounded Gaussian random field N. Its characteristic

function can be written as:

(f) = exp[i<f,f>- 1<R f f>.] -2 N

In particular, if the bounded Gaussian random field is the isonormal field with

parameter 0 > 0 then

RN = I.

Let B(H) denote the Borel 0-algebra of H and let W be a probability measure

on B(H). Define the random field F : H - L°(H,B(H),p) by [F(f)](g) = <f,g>.

In this way every Borel Probability measure p on B(H) produces a random field.

Suppose F : H - L°(2,A,v) is a random field. Then we say F is generated by p on

B(H) if F is equivalent to F. We then have

Proposition 4.2. A Gaussian random field N is generated by a probability measure

on (H,B(H)) if and only if the covariance operator RN is trace class.

Thus if dim H=-, the isonormal random field with Lovariance operator oI, a > 0

could never be produced by a countably-additive probability measure on (H,B(H)).

By the Gross construction 'f' "Ji'ring", the finitely additive measure corresponding

to the isonormal field car b( "extended" to a countably additive measure

on a separable Banach n ,
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I LR) will enot'e thm ) iwort:; sozo, . :.t'easing functions, and

s'(R n ) its dual, the space of tempered distributions. In the sequel it will be

often convenient to define a random field as a mapping F : V - L0 (Q,Aj) where

V is a topological space. In particular we shall h.ve occasion to take V S(R).

We shall often make the assumption that the random field is determined by f F V

in the sense that the smallest a-algebra w.u. to which the random variables

{F(f)IfcV} is measurable is A. We call such a random field full.

Construction of the Unit Gaussian Random Field.

Let H be a separable Hilbert Space and let (e) be an orthonormal basis

for H. Let Pbe the one point compactification of R and let 0 = I P be the

Cartesian countable product of copies of P. Q is a Compact Hausdorff space in

the Tychonov topology. Let C(Q) be the set of continuous, functions on Q and

let P(Q) be the set of functions (xl, ... ,x n ) in C(s ) which depend only on a

finite number of copies. With the supremum norm topology C(2) is a Banach space

and (by the Stone-Weierstrass theorem P(Q) is dense in C(Q). For 0 6 P(Q) define

k(O) = (27) 1 (x I l ...,X n) e  2dx .  .-dx
n""

Then k : P(Q) R is linear and jk( ) Wjj Ij and hence k can be entended to a

continuous linear functional on C(Q). By the Piesz Representation theorem there

exists a Borel probability measure pj on B(C) such that k(O) = fdp , V C(Q)
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Let F(en ) n 2 be miiW [:;Lication by x n, n = 1,2,... Then F(e n ) is a.e.

in R and hence F(e ) :Q P , sitsurnb~e. It can be shown that F(e ) 6 L2 (Q,B(C),P)n n

and {F(e r=l,2,... } generate B(C). If f £ H and f = N ane then aF(e ) con-
n n n n n

verges in L2 (Q,B(C),i) to an element F(f). This is the unit full Gaussian Random

field on H.

4.2.' Random Fields on f(R") sznd W]ite Noise

Let F : S(R n ) - L°(2,A,P) be a random field. The derivative F' of the random

field is defined by

F'(f) - F(f')

F' is a random field and if F is gaussian, F' is also Gaussian. Now a random

field F : S(Rn) - L°(Q,A,w) is generated by a stochastic process (assumed to have
Rn

square integrable sample paths) X : x Q - R if

[F(f](w) = ff(x)X(x,w)dx , Vf £ S(Rn).

Let W(t,w) , t F- [0,- ] be the standard Wiener process and let F be the

Gaussian random field generated by W(t,w). The covariance functional of F can

be computed as

= f f min (s,t)f(s)g(t)dsdt

= f [f(s)-f(-)[g(t)-g(-)]dsdt

where f(t) = ftf(s)ds and g(tY = ftg(s)ds.
0 0

F' the derivative of F exists (in the sense of distributions) and its covariance

functional is given by

CF,(fg) (= CF(',g') f-f(t)g(t)dt = <f,g>
F1 F 0

where <,> represents the natural inner product on S(R) embedded in L 2(R).

F' is white noise.
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h.3 Second Quantization (After Segal and Nelson)

Let H be a real Hilbert space and let F : H - L0 (Q,A,V) be the unit

Gaussian determined random field. If fil .... fn are orthonormal in H and c
n0

is a Bounded Baire function on Rn, then

2

fr (F(f 1),...,F(f n )  /2 f (x 2 d(2FU w~ = n/2 ¢(x)e dx

Q (2Tr) R0

For concreteness (Q,A,p) may be chosen to be countably infinite copies of

(R,B(R), (27) -1/2 e-x2/2 dx).

If E denotes expectation on (Q,A,p) then

(4.3.1) E(F(fl)...F(f2n+l)) = 0

(4.3.2) E(F(f)... F(f2 )) = f<4'. > ... <f. ,f. >
I1 i n in

where the sum of over all pairings of 1,...,2n i.e. i <...<in; il<Jl,...,inJn,

and (ilJ,... ,i njn) is a permutation 1,.. .2n.

LP(Q,A,) is denoted by LP(H) and r(H) denotes L2 (H). F(H)<n be the closed

linear span in F(H) of' all elements of the form F(f ). .. F(f ) with m<n and let

I(H) n denote the orthogonal complement of F(H)<n1 in f(H)<n. For fl,... 'fn in H

we define the Wick polynomial

: F(f )...F(f n )  :

to be the orthogonal projection of F(f ). .. F(f n ) into E(H) . In the special case,
2 n 2

where H is one dimensional and hence r(H) L (R,B(R), (2)-/2 e-X /2dx), (H)

nis th one dimensional subsngre spanned by the nth Hermite polynomial and :x

is the nth Hermite polynomial normalized so that th, leading coefficient is 1.

We have the formula

(4. .3) <:F(f )...F(fn): , :F(gl )...F(g n):> = f<f (n),gn> .



where the sum is over all 7.rmut Vns 7 of 1,...n. If all the f's and g's

are equal, we get

S n 2e-X2 /2

(5.3. 4) <:F(f)n: , F(f) n> f f(:x :) e dx = n!

Let H1 be the complexiication of H and let Hn denote the n-fold Hilbert space

symmetric tensor product of H1 with itself. On H we define the inner product1 n

such that

(1 3.) SymflG.•1 x"(5 fn)' , ym(gl ... Jgn)> = <fTT(1)T Ig>. <f7(n) ,gn>

where

1 S -x) .. . n n' 7T r( " fiT(n)

()<3.3) and (4.3.5) we see
From -hat the mapping :F(f )...F(fn ): SyrSy(flD'''2fn

n nl

extends uniquely to a unitary operator from r(H) onto H . We use this mappingn n
to identify r(H) and IH . Analogous to the fact thnt the one-dimensional Hermite

n Ii
1' 2

polynomials span L2(RB( ), (;?,,)-le-X 12 dx), Segal proved

.. T) P(H) H for arbitrary real Hilbert space H.
n=O

'(Hi) is Fock Space.

If the random field F(f) = ffdW, where f C L 2(R) = H and W is the standard
Wiener process, then elements of r(H)n are multiple Wiener integrals (in the

sense of Ito).

The space F(H) is intrinsically attached to the structure of H as a real

hilbert space. Thus if [1: 1{ - K is an orthogonal mapping of one real Hilbert

space into another, it induces a unitary mapping r(u) : F(H) - r(K), where on

H, (tT) = U;x ...(x U . imilarly if I : If - K io. an isometric embedding then

n-fold it induces an isometric embedding

F(i) : r(H) - r(K) and similarly for an orthogonal projection E : H - K.
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If A : H - K is a contraction then r(A) : f(H) F(K) is defined to be the direct

sum of I(A) : H n- K , where r(A) = A )...xA. Now any contraction A H + Kn n n n -

n-fold
can be decomposed as

I U
H -H 'K --- K 40H

K

where I, U and E are as above.

Hence F(A) F(E)F(U)r(I). Now r(A) is doubly Markovian in the sense that

OL > 0 ==> r (A) a> 0

(h.. (A)l = 1

Er(A)a = Ea

Any doubly Markovian operator is a contraction from L to Lp.

It turns out that F(A) ius stronfger, eon! r i -t1N'. pr-operties and the precise

statement of this is an important theorem of Nel.son.

Theorem I!.3.1 (Nelson Hypereontractivity Theorem).

Let A : H - K be a contraction. Then (A) is a contraction from Lq(H) LP(K)

for 1 < q < p < oo provided that

(4.3-9) AIl ".
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If (4.3.9) does not hold then i(A) is not a bounded operator from L%) - LP(K).

4.4 Absolute Continuity of Gaussian Random Fields

Let be a Gaussin 'm .:,. rinom field H - LC(LAp) = r(H). We consider

the following related :i

(1) Given A : H - H linear, continuous when is there a unitary map

U : J(H) - P(H) so that

U (f)U - = (Af) V f C H?

(2) Given A as in (1) when is there an F in N() so that each 0(f) is a Gaussian

random variable with respect to IF 2 do but with variance LjjAfj 1 instead

of~ . I,,1 2 .2

(3) Given two Gaussian random fields with general covariance on the same Hilbert

space H when can they be realized on a single measure space but with two mutually

absolutely continuous measures?

The above problems are essentially equivalent and we present an answer to

(3) under the assumption that A is positive and has a bounded inverse.

:heorem 4.4.l (Feldman, fefal, Shale)

Let ¢ H - L ( M,Ao) be a Gaussian unit random field and let A : H - H

be linear, bounded, positive with bounded inverse. Then a necessary and suffi-

cient condition for the gausslan random field on H with variance 11Afl 12 to

be realizable on Q with measure V equivalent to V is that A - I be a Hilbert

d"'midt Operator.

-.5p[liscussion

Fock space has an important role to play in the study of the free Quantum

field which can be considered to be an infinite assembly of non-interacting har-

monic oscillators.



1 d2  1 2

Consider the harmonic oscillator hamiltonian H 2 dx 2 +  x as a self-

adjoint operator on L2 (F). If instead we work with L (, g), where g is Gaussian

measure then the action of E on the Hermite polynomials h is given by h n n h n
n n n

group itH
From this it is clear that the one-parameter e generated by H acts as

_2/21 - /2

h n eint h . If we denote by W the unitary map 
f(x) W f(x)[- e

n n -

L2(T) L 2 (R) then the operators p = i and q = x on L (F) transform to

p' = WpW -I and q' = WqW- I and -(p,2 + q2 ) can be identified as the Harmonic Oscil-
2

lator hamiltonian. By the ideas of second quantization described in section 4.3,

we can extend the one-dimensional case to an infinite dimensional setting. When

this is done this gives rise to the particle representation of the free field and

the concept of a number operator.

Shale's theorem on tne equivalence of Gaussian Random fields essentially shows

that the Kalman filter is analogous to the free quantum field. This can be done

by noting that the observations and innovations proc:esses are related by

v= (I-K)y where K is a Hilbert-Schmidt operator.
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5. Some Lie Algebras of Interest in Filtering Theory.

Let us recall that in section 3 we showed that the unnormalized conditional density

of xt given the observations fys10 < s < t} satisfies a stochastic partial differ-

ential equation

(5.1) dq(t,x,w) = L0q(t,x,w) + Llq(t,x,w)dyt

where L0 is the formal adjoint of the generator of the diffusion process corres-

ponding to the stochastic differential

(5.2) dxt = f(x t)dt + g(x t)dwt

and hence L0 is given by

1 d 2  2 d(5 3• = g - _

() 0 2 d 2  - x

and

(5) L1 = Multiplicatirn by h(x).

1 2 1 2
The Lie Algebra of operators LA{L* - L generated by L and

0 2 1i 1L0

L have an important role to play in filtering theory. This comes about by writing

equation (5.2) in Stratanovich form (a fact which can be justified rigorously under

the hypotheses we have adopted)

(5.1)' 32 (t,x) = (L* - ILl+YtLlWt

This suggestive form of writing is meant to show the anology of the filtering

probiem with the interacti, picture. of !lar, Wim yhI]°h'.

It tuirns out, that, a r:un:ber of fi t iinr i r' l lv,.; ve rise to Lie Algebras

of operators which are representations of known algebras which arise in mathematical

phy:;icn . We fitrst, summari:, t"., knrwn f':n,' :11l :,min Tic Algebras arising in

.............................~-..



mathematical physics.

'.. The Heisenberg Algebra and tho Weyl Algebra.

Let n > 0, and let. (1,, ... , "111 ... ,q ,Z) be a basis for a real vector space
11 n'

V. On this space we can d(.'ine the structure of a Lie Algebra by defining

pi~q i I= -[qipiI = z, the other brackets between elements of the basis being

7ero. Let us denote this! Li- Algebra by N. The centre ofNis ]Rzand we have

[N,N] = FRz and hence this Lie algebra is nilpotent.

If N is a Lie algebra with centre c and if c = [N,N] and dim c = 1, then N

is a Heisenberg algebra.

Proposition 5.1

Let N be a nilpotent i]Febra. Suppose that all characteristic ideals (1 ) of N

are of dimension < 1. Then either N is zero or a Heisenberg algebra.

We denote the algebra defined by 2n-generators pl,ql,... ,pn,qn and the bracket

rt.latiOns

[p1,q1] --1.

[ iqi] = [PiPj I , = ,qI] = 0 for i # J

by A (F) or simply A . These are the so-called Weyl algebras.n n iI . n Jn

Elements of the form F_ q.. ' n i (11 ... Ii jcN) generate the'q ' 'n 'qn n$'J ,n )gnrt h

vector space A .n

In the vector space, PF = X IX ... ,X I let P. be the endomorphism _ and
1 n I aX.i1

Qi the fndomorrhism of mnoV in]ication by X.. We have1 1

( iQAI = I.

[PiQ ] = [Pi P ']  0 for i #

(1) Let g be a Lie ilgebrn. A di-rivation of a is a linear mapping. D: q-g@ such
that D([x,y]) = [Dx,yI + [x,Dy] Vx, y c qj. A characteristic ideal of g is a
subspace which is stabl., l'or rill derivations of q.
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and hence there exists a homomorphism P: An - End(E) such that (pi P.i and

o(qi) Q for all i. The elements P i 'Q'1 ... P nQ n are linearly independent
1 n n

n inand therefore the elements Tl ql r ' Pn qn form a basis for the vector space An

and p is injective. It follows that An = A l1,..< A (n-copies). The repre-

sentation p of A in E is termed the standard representation. Finally E is an

simple A -module and the set of A -endomorphisms of E is R.n n

Let B be the set of linear combinations of
m

il Jl il J1n

P1 ql "P n qn z An such that i + l + ) < M

Then B B C B

Consequently the graded algebra associated with A equipped with the filtra-
n

tion (Bo,B I ... ) is the polynomial algebra in 2n-vt.riables.

Proposition 5.2

(i) A is integral and noetherian.n

(ii) The centre of A is IF.n

(iii) The algebra A is simple.

Proposition 5.3

Let pl,ql,... pnq be the canonical generators of An . Let us define vector

subspaces S,T of A as follows:
n

n
(i) S = rpr reF }.

i =1

(ii) T = r (pq q pi) + rpip +rqiq1 ) I rAR}

l < i ,J< n .-

Then:
(i) 1 * S and T are Lie sub-algebras of A

n

(ii) ]F * S i. a Heisenberg algebra.
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The relationship bt'w'-.1 t iber nd Wey] al ebras is given by

Proposition 5.4

A ( ) - U(N)/J
rn

where I(N) is the envelopimr algebra of the (2n+l)-dimensional Heisenberg Algebra

N and J is % two-sided i ical in U(N).

'.2. The OIscillator :A,-ebra.

The real Lie algebr-i with 2n + 2 generators (hPl,...,pn ql,...,qnZ)

;atisfying the bracket r% vl. *ns

[hpiI = qi I [hqi] .= Pi [pi'qi] = z , andthe otherbrackets being zero

is defined to be the oscillator algebra. This is a solvable Lie algebra. This

algebra is the semi-direct sum of the one-dimensional algebra spanned by h and

the Heisenberg algebra N.

5.3. The Poisson Bracket Algebra.

Consider IR2 n = {(q,P) I q = (q....'qn) ' p = (Pl .... Spn with its stan-

dard symplectic structure (nee later section). For f,g E CO(R 2 n ) , the Poisson

bracket is given by=n
{f,gl - f a

i=l pi ppi Pi Dqi

The real vector space of' rc lynomials in (q,p) denoted by P is a Lie algebra under
n

the Poisson bracket operation.

Proposition 5.5

P is generated by the two polynomials q and h = p2 + 4 if n = 1. and q and
n

n[ (i2 qi + qi +]if n > 1. That is Pn coincides with the smallest

Lie subalgebra Qn containingl and h.
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Proposition 5.6

P n/M is simple.

5.4 Examples of Non-linear Filtering Problems and Their Lie Algebras

Example 1.

Consider the non-linear filtering problem

(5.5) I d x t = f(xt)dt + dwt

dyt = h(x t)dt + dnt

and let us assume that f, h E C (R) . In the light of section 3, the Mortensen-

Zakai equation is

= (L -I 2)q dt + Llqt'dYt

* 1 2  d
where - 2 d -2  d f

o 2 2 C x

L= multiplication by h(x).

We then have

Proiosition 5.7

*12
LA{L* - - L1, L1) is finite dimensional only in the caseo 2 1' 1

f2 2

(ii) f + = ax + bx + cx

where the Lie algebra of operators is computed on the common domain C (P) or S(I) .

In the above if we want the diffusion process to be defined globally on P,

so we assume that the Riceati equation f + f2 = ax + bx + c has a global solu-x

tion.

The example covered by Proposition 5.7 has recently been considered by Benes.

From Section 3.1, we can see that we can remove the effect of the drift by a Gauge
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transformation. From (3.15) we see that it is enough to solve

di = Lotdt - V(x)ltdt + hqt dy t

12But LA{L* - i LI LA{ - V(x,,L }, and under the hypotheses of Proposition
10 2 1' 1 0 1

5.7 the second Lie algebra has a basis consisting of the elements

12 ^ 12 d0- .L1 , Ll,[L0 -  L, L1 = L2 = , [L2, L 2

This however is essentially the Harmonic Oscillator algebra and corresponds

(essentially) to the filtering problem

xt wt

dyt = xtdt + dq t

which is a Kalman filtering problem.

It should also be remarked that there is no difficulty in extending this

example to the multi-dimensional situation

dx t = f(xt)dt + dw t

dyt = Hxtdt + dnt  ,

provided f: Rn  Rn is VF = ( F nHR n This fact is alsox- "" -X)n and H R R.Thsftislo

clear from our considerations relating Schrodinger and Dirichlet operators.

Finally, this problem is the analogue of the imaginary time Harmonic Osci]1ntor

problem with an external force.
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Example 2.

Consider the non-linear filtering problem

xt = t
(5.6) 3

dy t =t

This is the so-called cubic sensor problem. From Proposition 5.7,
id 16 3

LA{ I--i - 1x , x3 is infinite dimensional. From the calculations required to
2dx2 2

establish Proposition 5.7 it can be shown that the Lie algebra is isomorphic to

the Weyl algebra A. which is simple.
I

Example 3.

2
Consider the model given by (5.5) and suppose that f + f = V(x) has a

global solution where V(x) say is an even positive polynomial (other than the

1 2
quadratic). Then from Proposition 5.7, LA{L* - TLl L I is infinite dimensional.

Even more, these Lie algebras (modulo their centre which is R) are simple.

This fact follows by doing calculations similar to thoee involved in establishing

that the Poisson bracket algebra is simple.

Example 4.

Let us consider the model of (5.5) and let f, h QC c(U) where U is some
1 2 0

open set in R. Then by restricting L* - 1L1 and L1 to C.(U) the Lie algebra
1 2

LAIL* - 1 L2 , L is finite dimensional only in the (prototype) case
0 21' 1

W x 2(i) h--x2

(ii) f + f - 14

---------
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Note that the last equation (Riccati) has finite escape time.

Suppose we consider the slightly more general model

dx t =f(xt)dt + g(xt)dwt  , where f, g G CO(U)

U open in R and g(x) > 0, x 9 U. In this case we can remove the diffusion

term g by a non-linear smooth change of coordinates.

Let xt = a(z t ) where a is smooth and invertible. Then by the Ito differen-

tial rule

dxt = zdz + dt = f(ot(zt))dt + g(a(zt))dwt
zt 2 zz t t

Hence

dzt = (a )F (f(a(z ))dt - -az ))dt + ((z)-ig(a(zt))dw
z t 2 Z t t t

Let a satisfy the differential equation

da

and let I be the maximal interval in R on which the solution is defined. Then

dzt = (g(a(z ))-f(ci(zt)) -2ga (z t))dt + dw t = ?(zt)dt + d ttt it t tt

The observation equation is

dyt = F(zt )dt + drlt where I = h(a(zt)).

Now it is easy to see that

2 1 d 12d 2  d 1-2L A{ "f h} - Ad - x' - ? - =-

-f-- , h iLA{---...-.i, ,, i

7x2 d~x 2

_ _ _ _ _ _ _ _ _ _ ih
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where the first Lie algebra is computed on the common invariant domain C (U)

and the second on the common invariant domain C(I).

5.5 Significance of the Results

* 2
If the Lie Algebra LA{L0 - L L I is finite dimensional, then it should be

possible to construct the filter by integrating the Lie algebra. We consider this

aipect of the problem in the next section. If the Lie algebra is infinite dimen-

sional and simple then we conjecture that it cannot be represented by a Lie alge-

bra of vector fields with analytic coefficients. That is, we cannot represent

the solution q(t,z,y ) of the Mortensen-Zakai equation by means of a finite dimen-

sional sufficient statistic described by a vector differential equation

(5.7) d.t = a(%t)dt + bIot)dYt

Suppose we are interested only in computing unnormalized conditional statistics

+I(xt). If we denote this by %t then

= JF 4(z)q(t,z,yl)dz

It may be possible to represent 4t as the output of a vector differential

nystem:

datt  a(at)dt + b(at)dyt
(5.8)

t c(0t)

A theorem of Brockett says that for this to be possible there must exist a

homomorphism between the Lite algebra of operators IAL 0 - L 1  and the Lie

algebra of vector fields a - - b b and b such that under the homomorphism
2 x
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* 12o 1

L -- L1  a - b b :ind i b. This would sufrgest that the ideal structureo 2 1 2x

of the Lie Algebra L = LA{(L- L- PL} should be important. If there exist non-

trivial ideals I then aid:it, f'or such a homomorphism would be 4 L - L/I.

The results of this section show that for a large class of problems this line of

attack will not be possible, since the Lie algebra L is infinite dimensional and

simple.

A possible approach might be to represent t as the output of a delay system,

that is look for a representation of the form

dat  a(ctt ate)dt + b(atctt0 )dyt

$t =f08c(st,,t_o)d .

There is some reason to believe that it might be possible to do this for the

cubic sensor problem considered in Example 2.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Notes and References for Section 5

(i) The idea of studying the Lie Algebra of operators involved in the Mortensen-

7akai equation is independently due to R.W. Brockett and myself. I was motivated

by the analogy between the Kalman filter and the Free Quantum field and I discussed

these 'ideas in a series of lectures in the University of Maryland in December 1977.

this
In connection see: R.W. Brockett: Remarks on Finite Dimensional Non-linear Esti-

mation, presented in the Conference on Algebraic and Geometric Methods in System

Theory, Bordeaux, France, September 1978, to appear in Asterisque, 1980.

S.K. Mitter: Filtering Theory and Quantum Fields, presented in the Conference on

Algebraic and Geometric Methods in System Theory, Bordeaux, France, September 1978,

to appear in Asterisque, 1980 and the references cited in the above two papers.

(ii) For the material on Heisenberg and Weyl Algebras see: J. Dixanier: Algsbres

Enveloppantes, Gauthier-Villars, Paris, 1974.

Propositions 5.5 and 5.6 on the Poisson Brackett Algebra are due to A. Avez and

A. I{eslot: L'algebre de Lie des Polyn3mes en les Coordonnees Canoniques munie

de Crochet de Poisson, C.R. Acad. Sc. Paris t. 288 Serie A, Mai 1979, pp. 831-833.

(iii) Proposition 5.7 is due to Daniel Ocone and is related to non-linear filtering

problems first introduced by V. Benes. See D. Ocone: Doctoral Dissertation,

Mathematics Department, M.I.T., June 1980 and V. Benes: paper to appear in

Stochastics, 1980.

(iv) The content of Examples 2 and Examples 3 are new and due to Daniel Ocone and

the author. The content of Example 4 is due to Daniel Ocone (forthcoming Ph.D.

dis:tertation) and R.W. Brockett: loc. cit, paper in Decision and Control Confer-

ence 1979.

(v) The reference to the theorem of Brockett cited in section 5.5 is contained

in R.W. Brockett: foc. cit.

(vi) Recent work (unpublifi,,,d) by John Rarar as well as M. Hazewinkel and S. Marcus

shows that the billnear filtering has a nice ideal structure and many filterations.
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h. R ,msentation of tho }"i I or!.

The complete solution of' the non-linear filtering problem requires computing

the propagator of the ,orttnsen-,akai equation or equivalently the unnormalized

conditional transition density q(tz zyts,x). We have discussed several approaches

to computing the density q(t,z,yo). For the class of problems considered by Benes

the propagator could be computed by solving the tvo-point boundary value problem

-T T = Z

dn T = T- dT - Vt () dT + dy T

according to the development of section 3.2. This is the approach of functional

integration.

The Lie-algebra viewpoint to computing the propagator would require that the

Lie algebra be integrable. This is a difficult question as we can see by discussing

the commutation relationship of quantum mechanics.

.i Cn ica Commutation F'HIations and their Unitary Representations.

Consider a massive spinless, nonrelativistic particle. Its configuration

space is typically L 2(R). The position operator q L 2(R) L 2(R) is defined
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as the operator with domain

D(q) = If E L2(R) xf(x) C L2(R)} and
(6.1)

(qf)(x) = x f(x).

The momentum operator p : L 2(R) L T2(R) has domain

V(p) = f C L2(R) I f' L2 (R)} and
(6.2)

pfx = . dx
I dx

The Schwartz space S(R) c V(q) n D(p), S(R) is dense in L2 (R) and is left

invariant under q and p. Moreover on S(R) they satisfy the Heisenberg Commuta-

tion Relations

(6.3) qp - pq = i I

-lap
Since p is seif-adjoint, the operator U(a) =e . a e R is unitary

and the operators

{U(a) I a C R} forms a one-parameter strongly continuous unitary group.

Now D(q) is invariant under U(a), a c R and it can be shown that

(6.h) U(a)qU(-a) = q - a I on D(q).

This is the Schr5dinger form of the Canonical Commutation Relations.

Since q is self-adjoint it generates a strongly continuous one-parameter

unitary group V(b) given by

(6.5) V(b)f(x) = e- Xf(x).

It can be shown that

(6.6) U(a)V(b) = e 1bV(b)U(a)

This is done by first. ohecking it on S(R) :Ind then extending by continuity

to all of L2(R).

(6.6) represunts the W(,yl Form of the Commuttio, Relatlon: .
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It is a well known fact tiL the Heisenberg form of the canonical commutation

relations do not give rise to a unitary grour representation, while the Schridinger

and Weyl forms do. This gives rise to the following general question: Suppose we

have a representation of a Lie algebra g by skew-symmetric operators defined on a

common invariant domain D in a Hilbert space H and let G be the simply connected

Lie group with Lie algebra g. When does the representation of g come from a uni-

tary representation G?

The answer to this question is connected with questions of essential self-

adjointness and the existence of a common dense set of analytic vectors. We dis-

cuss some of these questions now.

Let G be a Lie group and X a Banach space. A representation T of 0 is a

mapping G -L(X) : a 4 T(o) , where L(X) is the set of bounded operators such

that T(e) = I, e being the identity element and T(I'a2 ) = T(a )T(a 2), for all

N1' 2 F G and V x C X, a " T(a)x is continuous (with X the norm topology).

The representation is called unitary if X is a Hilbert space and each T(a) is a

unitary operator.

A vector x £ X is an analytic vector for T in case the mapping a + T(a)x

G - X is analytic.

The salient facts connecting representations and analytic vectors are:

Theorem 6.1: Let T be a representation of a Lie group G on a Banach space X.

Then T has a dense set of analytic vectors in X.

The answer to the question raised earlier in the section is contained in

the following theorem and corollary due to Nelson:

Theorem 6.2: Let g be a Ii'- algebra of skew symmetric operators on a Hilbert space H

having a comion invariant domain V. Let X1,... ,Xd be a basis for g, A = X +. .+X 2
d1 d*

If A is essentially self-adjoint, then there is on H a unique unitary represen-

tation U of the simply connected Lie Group G having g as its Lie algebra such

that for all X in g, U(X = X (bar denotes closure of an operator).
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Corollary 6.3: Let g be a real Lie Algebra, H a Hilbert space. For each X in g

let p(X) be a skew-symmetric operator on H. Let D be a dense linear subspace of

H such that for all X, Y in g, D is contained in the domain of p(X)p(Y). Suppose

that for all X, Y in g, x in D, and real numbers a and b,

p(aX + bY)x = ap(X)x + bp(Y)x

p([X,Y])x = (p(X)p(Y) - P(Y)p(X))x

Let XI ... ,Xd be a basis for g. If the restriction A of P(X 1) 2+...+P(X d )2 to

is essentially self-adjoint, then there is on H a unique unitary representation

U of the simply connected Lie group G having g as its Lie algebra such for all X

in g, U(X) = P(X).

Corollary 6.4: Let g be a real Lie algebra with a basis X1 ,... ,X G the simplyd9
connected Lie group with Lie algebra g, H a Hilbert space, C a dense linear sub-

space of H. Letp be a representation of g by skew-symmetric operators with domain

C. Then there is a unitary representation U of G such that C is the space of in-

finitely differentiable vectors for U and U(X) = p(X) for all X in g if and only if

A = p(X) 2 +...+P(Xd)
2

;s essentially self-adjoint and C =-n)l0(-n)
-

How do these ideas relate to the representation of the filter? Firstly, the

equation we are dealing with is a stochastic parabolic equation valid for t > 0.

Hence the operators L and L will in generp! only generate semi-groups. Consider
0 1

the Kalman filtering problem (or any problem Gauge equivalent to it). Then what

is necessary is to give a precise meaning to the time-ordered operator product

t L tL t3L t
1 0 21 3 2 4e e e e , 0a -a

as an evolution operator (in the sense of Kato). For the Kalman filtering this can
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be done using special methods. '.here are examples, like the estimation of a Bessel

process in additive white noise where this appears not possible to do. To see the

connection to unitary representations of Lie groups, it might be best to complexify

and try to check the conditions of Nelson's theorem. We conjecture that if the Lie

algebra representation does not extend to a unitary group representation then we

shall not be able to give meaning to the time-ordered operator product considered

above.

Finally, the most direct way appears to be to try to integrate equation (3.15)

of Section 3

dt1 2 2.
d-- =  (L0 - 2 + YtL 2 4t - ytL qt

but the question of integrating the Lie algebra also appears here.

I,
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Notes and References for Section 6

(i) For a detailed account of group representation theory relevant to this section

see, A. 0. Barut and R. Raczka: Theory of Group Representations, PWN-Polish Scien-

tific Publishers, Warsaw 1977. The exposition given here closely follows:

E. Nelson, Analytic Vectors, Annals of Mathematics, 70, 1959, pP. 572-615.

(ii) The details of treating the Benes and similar problems using Group Invariance

and Lie Algebraic ideas will appear in a joint paper by J. Baras, S.K. Mitter, D.

Ocone. See also D. Ocone, forthcoming Doctoral Dissertation, M.I.T., June 1980.

.. . 1
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